2017-02-25 173 views
2

我正在尝试使用GLCM算法在卫星图像中进行纹理分析。 scikit-image文档对此非常有帮助,但对于GLCM计算,我们需要一个窗口大小循环显示图像。这在Python中太慢了。我在关于滑动窗口的stackoverflow上发现了很多帖子,但计算需要永远。我有一个例子显示在下面,它的作品,但永远。我想这一定是做Python中的滑动窗口用于GLCM计算

image = np.pad(image, int(win/2), mode='reflect') 
row, cols = image.shape 
feature_map = np.zeros((M, N)) 

for m in xrange(0, row): 
    for n in xrange(0, cols): 
     window = image[m:m+win, n:n+win] 
     glcm = greycomatrix(window, d, theta, levels) 
     contrast = greycoprops(glcm, 'contrast') 
     feature_map[m,n] = contrast 

我碰到一个skimage.util.view_as_windows方法,这可能是对我很好的解决方案的原始的方法。我的问题是,当我尝试计算GLCM我得到它说的错误:

ValueError: The parameter image must be a 2-dimensional array

这是因为GLCM图像的结果有4D的尺寸和scikit图像view_as_windows方法只接受二维数组。这是我尝试

win_w=40 
win_h=40 

features = np.zeros(image.shape, dtype='uint8') 
target = features[win_h//2:-win_h//2+1, win_w//2:-win_w//2+1] 
windowed = view_as_windows(image, (win_h, win_w)) 

GLCM = greycomatrix(windowed, [1], [0, np.pi/4, np.pi/2, 3*np.pi/4], symmetric=True, normed=True) 
haralick = greycoprops(GLCM, 'ASM') 

有没有人对我怎么能计算出使用skimage.util.view_as_windows方法GLCM的想法?

+0

我们或许应该扩大view_as_windows支持更高维数组;也许你有兴趣提出拉请求。否则,你也可以看一下'apply_parallel'的实现,看看如何使用dask来做到这一点。 –

+0

谢谢你的回答。如果'view_as_windows'可以支持更高的数组维度,这将是一个好主意 – Johny

+0

开发中的最新版本支持N-d。即将发布。 –

回答

2

您尝试执行的功能提取是一项计算机密集型任务。我已经通过计算整个图像的共现图一次,而不是在滑动窗口的重叠位置上一遍又一遍地计算共现图,从而加快了您的方法。

共现图是与原始图像大小相同的图像堆栈,其中 - 对于每个像素 - 强度级别由编码两个强度共同出现的整数代替,即Ii at该像素和Ij位于偏移像素处。共现图具有与我们所考虑的偏移一样多的层(即所有可能的距离角度对)。通过保留同现图,您不需要从头开始计算滑动窗口每个位置处的GLCM,因为您可以重复使用之前计算的同现图来获取每个距离的邻接矩阵(GLCM) - 角对。这种方法为您提供了显着的速度增益。

我想出的解决方案依赖于以下功能:

import numpy as np 
from skimage import io 
from scipy import stats 
from skimage.feature import greycoprops 

def offset(length, angle): 
    """Return the offset in pixels for a given length and angle""" 
    dv = length * np.sign(-np.sin(angle)).astype(np.int32) 
    dh = length * np.sign(np.cos(angle)).astype(np.int32) 
    return dv, dh 

def crop(img, center, win): 
    """Return a square crop of img centered at center (side = 2*win + 1)""" 
    row, col = center 
    side = 2*win + 1 
    first_row = row - win 
    first_col = col - win 
    last_row = first_row + side  
    last_col = first_col + side 
    return img[first_row: last_row, first_col: last_col] 

def cooc_maps(img, center, win, d=[1], theta=[0], levels=256): 
    """ 
    Return a set of co-occurrence maps for different d and theta in a square 
    crop centered at center (side = 2*w + 1) 
    """ 
    shape = (2*win + 1, 2*win + 1, len(d), len(theta)) 
    cooc = np.zeros(shape=shape, dtype=np.int32) 
    row, col = center 
    Ii = crop(img, (row, col), win) 
    for d_index, length in enumerate(d): 
     for a_index, angle in enumerate(theta): 
      dv, dh = offset(length, angle) 
      Ij = crop(img, center=(row + dv, col + dh), win=win) 
      cooc[:, :, d_index, a_index] = encode_cooccurrence(Ii, Ij, levels) 
    return cooc 

def encode_cooccurrence(x, y, levels=256): 
    """Return the code corresponding to co-occurrence of intensities x and y""" 
    return x*levels + y 

def decode_cooccurrence(code, levels=256): 
    """Return the intensities x, y corresponding to code""" 
    return code//levels, np.mod(code, levels)  

def compute_glcms(cooccurrence_maps, levels=256): 
    """Compute the cooccurrence frequencies of the cooccurrence maps""" 
    Nr, Na = cooccurrence_maps.shape[2:] 
    glcms = np.zeros(shape=(levels, levels, Nr, Na), dtype=np.float64) 
    for r in range(Nr): 
     for a in range(Na): 
      table = stats.itemfreq(cooccurrence_maps[:, :, r, a]) 
      codes = table[:, 0] 
      freqs = table[:, 1]/float(table[:, 1].sum()) 
      i, j = decode_cooccurrence(codes, levels=levels) 
      glcms[i, j, r, a] = freqs 
    return glcms 

def compute_props(glcms, props=('contrast',)): 
    """Return a feature vector corresponding to a set of GLCM""" 
    Nr, Na = glcms.shape[2:] 
    features = np.zeros(shape=(Nr, Na, len(props))) 
    for index, prop_name in enumerate(props): 
     features[:, :, index] = greycoprops(glcms, prop_name) 
    return features.ravel() 

def haralick_features(img, win, d, theta, levels, props): 
    """Return a map of Haralick features (one feature vector per pixel)""" 
    rows, cols = img.shape 
    margin = win + max(d) 
    arr = np.pad(img, margin, mode='reflect') 
    n_features = len(d) * len(theta) * len(props) 
    feature_map = np.zeros(shape=(rows, cols, n_features), dtype=np.float64) 
    for m in xrange(rows): 
     for n in xrange(cols): 
      coocs = cooc_maps(arr, (m + margin, n + margin), win, d, theta, levels) 
      glcms = compute_glcms(coocs, levels) 
      feature_map[m, n, :] = compute_props(glcms, props) 
    return feature_map 

DEMO

下面的结果对应于从一个陆地卫星图像的像素(250, 200)作物。我已经考虑了两个距离,四个角度和两个GLCM属性。这导致每个像素的16维特征向量。请注意,滑动窗口是平方的,其边是2*win + 1像素(在此测试中使用的值为win = 19)。该样品运行了6分钟左右,这比“永远”很短;-)

In [331]: img.shape 
Out[331]: (250L, 200L) 

In [332]: img.dtype 
Out[332]: dtype('uint8') 

In [333]: d = (1, 2) 

In [334]: theta = (0, np.pi/4, np.pi/2, 3*np.pi/4) 

In [335]: props = ('contrast', 'homogeneity') 

In [336]: levels = 256 

In [337]: win = 19 

In [338]: %time feature_map = haralick_features(img, win, d, theta, levels, props) 
Wall time: 5min 53s  

In [339]: feature_map.shape 
Out[339]: (250L, 200L, 16L) 

In [340]: feature_map[0, 0, :]  
Out[340]: 
array([ 10.3314, 0.3477, 25.1499, 0.2738, 25.1499, 0.2738, 
     25.1499, 0.2738, 23.5043, 0.2755, 43.5523, 0.1882, 
     43.5523, 0.1882, 43.5523, 0.1882]) 

In [341]: io.imshow(img) 
Out[341]: <matplotlib.image.AxesImage at 0xce4d160> 

satellite image

+0

非常感谢您的回答。在6分钟内在LANDSAT图像上运行GLCM算法非常快。 – Johny