2017-06-03 72 views
-1

所以我在CUDA中实现了(或者至少试过)Sobel滤波器,我的代码如下。当我执行这个文件时,我得到一个正确的Sobel过滤图像的一半,另一半是黑色的。我无法上传图片,因为它们的格式为.pgm。因此,代码所执行的操作是以.pgm格式的灰度图像读取的,并使用共享内存概念将Sobel滤镜遮罩与其进行卷积。我用一个1024×1024的图像作为输入,它返回一个Sobel滤波图像,其边缘有一半水平切割,因此它在下半部分是黑色的。有人可以帮助我在这里。另外,我对代码有点好奇,我不太了解第二批加载的功能,所以你也可以解释一下。使用CUDA与索贝尔滤波器进行卷积

sobel.cu

/* sobel.cu */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <float.h> 
#include <time.h> 
#include "mypgm.h" 

#define Mask_width 3 
#define Mask_radius Mask_width/2 
#define TILE_WIDTH 16 
#define w (TILE_WIDTH + Mask_width - 1) 
#define clamp(x) (min(max((x), 0.0), 1.0)) 


__global__ void convolution(float *I, const float* __restrict__ M, float *P, int width, int height) { 
    __shared__ float N_ds[w][w]; 
    int k; 

    // First batch loading 
    int dest = threadIdx.y * TILE_WIDTH + threadIdx.x, 
     destY = dest/w, destX = dest % w, 
     srcY = blockIdx.y * TILE_WIDTH + destY - Mask_radius, 
     srcX = blockIdx.x * TILE_WIDTH + destX - Mask_radius, 
     src = srcY * width + srcX; 
    if (srcY >= 0 && srcY < height && srcX >= 0 && srcX < width) 
     N_ds[destY][destX] = I[src]; 
    else 
     N_ds[destY][destX] = 0; 
    for (int iter = 1; iter <= (w*w)/(TILE_WIDTH*TILE_WIDTH); iter++) 
    { 
     // Second batch loading 
     dest = threadIdx.y * TILE_WIDTH + threadIdx.x + TILE_WIDTH * TILE_WIDTH; 
     destY = dest/w, destX = dest % w; 
     srcY = blockIdx.y * TILE_WIDTH + destY - Mask_radius; 
     srcX = blockIdx.x * TILE_WIDTH + destX - Mask_radius; 
     src = srcY * width + srcX; 
     if (destY < w) { 
      if (srcY >= 0 && srcY < height && srcX >= 0 && srcX < width) 
       N_ds[destY][destX] = I[src]; 
      else 
       N_ds[destY][destX] = 0; 
     } 
    } 
    __syncthreads(); 

    float accum = 0; 
    int y, x; 
    for (y = 0; y < Mask_width; y++) 
     for (x = 0; x < Mask_width; x++) 
      accum += N_ds[threadIdx.y + y][threadIdx.x + x] * M[y * Mask_width + x]; 

    y = blockIdx.y * TILE_WIDTH + threadIdx.y; 
    x = blockIdx.x * TILE_WIDTH + threadIdx.x; 
    if (y < height && x < width) 
     P[y * width + x] = accum; 

    __syncthreads(); 

} 

void sobel_filtering() 
/* Spatial filtering of image data */ 
/* Sobel filter (horizontal differentiation */ 
/* Input: image1[y][x] ---- Outout: image2[y][x] */ 

{ 
    /* Definition of Sobel filter in horizontal direction */ 
    float weight[3][3] = { { -1, 0, 1 }, 
       { -2, 0, 2 }, 
       { -1, 0, 1 } }; 
    float pixel_value; 

    int x, y, i, j; /* Loop variable */ 
    float * deviceInputImageData; 
    float * deviceOutputImageData; 
    float * deviceMaskData; 

    cudaMalloc((void **)&deviceInputImageData, x_size1 * y_size1 * sizeof(float)); 
    cudaMalloc((void **)&deviceOutputImageData, x_size1 * y_size1 * sizeof(float)); 
    cudaMalloc((void **)&deviceMaskData, 3 * 3 * sizeof(float)); 

    cudaMemcpy(deviceInputImageData, image1, x_size1 * y_size1 * sizeof(float), cudaMemcpyHostToDevice); 
    cudaMemcpy(deviceMaskData, weight, 3 * 3 * sizeof(float), cudaMemcpyHostToDevice); 

    /* Maximum values calculation after filtering*/ 
    printf("Now, filtering of input image is performed\n\n"); 
    x_size2 = x_size1; 
    y_size2 = y_size1; 
    for (y = 0; y < y_size2; y++) { 
     for (x = 0; x < x_size2; x++) { 
      image2[y][x] = 0; 
     } 
    } 

    dim3 dimGrid(ceil((float)x_size1/TILE_WIDTH), ceil((float)y_size1/TILE_WIDTH)); 
    dim3 dimBlock(TILE_WIDTH, TILE_WIDTH); 
    convolution<<<dimGrid, dimBlock>>>(deviceInputImageData, deviceMaskData, deviceOutputImageData, x_size1, y_size1); 


    cudaMemcpy(image2, 
     deviceOutputImageData, 
     x_size2 * y_size2 * sizeof(float), 
     cudaMemcpyDeviceToHost); 

    cudaFree(deviceInputImageData); 
    cudaFree(deviceOutputImageData); 
    cudaFree(deviceMaskData); 

} 


int main() 
{ 
    load_image_data(); /* Input of image1 */ 

    clock_t begin = clock(); 
    sobel_filtering(); /* Sobel filter is applied to image1 */ 
    clock_t end = clock(); 
    double time_spent = (double)(end - begin)/CLOCKS_PER_SEC; 
    printf("\n\nTiming result of multiplication of matrix-vector: %f\n", time_spent); 
    save_image_data(); /* Output of image2 */ 
    return 0; 
} 

mypgm.h

/* pgm file IO headerfile ------ mypgm.h */ 

/* Constant declaration */ 

//#define MAX_IMAGESIZE 1024 

#define MAX_IMAGEWIDTH 3840 
#define MAX_IMAGEHEIGHT 2160 
#define MAX_BRIGHTNESS 255 /* Maximum gray level */ 
#define GRAYLEVEL  256 /* No. of gray levels */ 
#define MAX_FILENAME 256 /* Filename length limit */ 
#define MAX_BUFFERSIZE 256 

/* Global constant declaration */ 
/* Image storage arrays */ 
float image1[MAX_IMAGEWIDTH][MAX_IMAGEHEIGHT], 
image2[MAX_IMAGEWIDTH][MAX_IMAGEHEIGHT]; 
int x_size1, y_size1, /* width & height of image1*/ 
x_size2, y_size2; /* width & height of image2 */ 

/* Prototype declaration of functions */ 
void load_image_data(); /* image input */ 
void save_image_data(); /* image output*/ 
void load_image_file(char *); /* image input */ 
void save_image_file(char *); /* image output*/ 


/* Main body of functions */ 

void load_image_data() 
/* Input of header & body information of pgm file */ 
/* for image1[ ][ ],x_size1,y_size1 */ 
{ 
    char file_name[MAX_FILENAME]; 
    char buffer[MAX_BUFFERSIZE]; 
    FILE *fp; /* File pointer */ 
    int max_gray; /* Maximum gray level */ 
    int x, y; /* Loop variable */ 

    /* Input file open */ 
    printf("\n-----------------------------------------------------\n"); 
    printf("Monochromatic image file input routine \n"); 
    printf("-----------------------------------------------------\n\n"); 
    printf("  Only pgm binary file is acceptable\n\n"); 
    printf("Name of input image file? (*.pgm) : "); 
    scanf("%s", file_name); 
    fp = fopen(file_name, "rb"); 
    if (NULL == fp) { 
     printf("  The file doesn't exist!\n\n"); 
     exit(1); 
    } 
    /* Check of file-type ---P5 */ 
    fgets(buffer, MAX_BUFFERSIZE, fp); 
    if (buffer[0] != 'P' || buffer[1] != '5') { 
     printf("  Mistaken file format, not P5!\n\n"); 
     exit(1); 
    } 
    /* input of x_size1, y_size1 */ 
    x_size1 = 0; 
    y_size1 = 0; 
    while (x_size1 == 0 || y_size1 == 0) { 
     fgets(buffer, MAX_BUFFERSIZE, fp); 
     if (buffer[0] != '#') { 
      sscanf(buffer, "%d %d", &x_size1, &y_size1); 
     } 
    } 
    /* input of max_gray */ 
    max_gray = 0; 
    while (max_gray == 0) { 
     fgets(buffer, MAX_BUFFERSIZE, fp); 
     if (buffer[0] != '#') { 
      sscanf(buffer, "%d", &max_gray); 
     } 
    } 
    /* Display of parameters */ 
    printf("\n  Image width = %d, Image height = %d\n", x_size1, y_size1); 
    printf("  Maximum gray level = %d\n\n", max_gray); 
    if (x_size1 > MAX_IMAGEWIDTH || y_size1 > MAX_IMAGEHEIGHT) { 
     printf("  Image size exceeds %d x %d\n\n", 
      MAX_IMAGEWIDTH, MAX_IMAGEHEIGHT); 
     printf("  Please use smaller images!\n\n"); 
     exit(1); 
    } 
    if (max_gray != MAX_BRIGHTNESS) { 
     printf("  Invalid value of maximum gray level!\n\n"); 
     exit(1); 
    } 
    /* Input of image data*/ 
    for (y = 0; y < y_size1; y++) { 
     for (x = 0; x < x_size1; x++) { 
      image1[y][x] = (unsigned char)fgetc(fp); 
     } 
    } 
    printf("-----Image data input OK-----\n\n"); 
    printf("-----------------------------------------------------\n\n"); 
    fclose(fp); 
} 

void save_image_data() 
/* Output of image2[ ][ ], x_size2, y_size2 in pgm format*/ 

{ 
    char file_name[MAX_FILENAME]; 
    FILE *fp; /* File pointer */ 
    int x, y; /* Loop variable */ 

    /* Output file open */ 
    printf("-----------------------------------------------------\n"); 
    printf("Monochromatic image file output routine\n"); 
    printf("-----------------------------------------------------\n\n"); 
    printf("Name of output image file? (*.pgm) : "); 
    scanf("%s", file_name); 
    fp = fopen(file_name, "wb"); 
    /* output of pgm file header information */ 
    fputs("P5\n", fp); 
    fputs("# Created by Image Processing\n", fp); 
    fprintf(fp, "%d %d\n", x_size2, y_size2); 
    fprintf(fp, "%d\n", MAX_BRIGHTNESS); 
    /* Output of image data */ 
    for (y = 0; y < y_size2; y++) { 
     for (x = 0; x < x_size2; x++) { 
      fputc(image2[y][x], fp); 
     } 
    } 
    printf("\n-----Image data output OK-----\n\n"); 
    printf("-----------------------------------------------------\n\n"); 
    fclose(fp); 
} 

void load_image_file(char *filename) 
/* Input of header & body information of pgm file */ 
/* for image1[ ][ ],x_size1,y_size1 */ 
{ 
    char buffer[MAX_BUFFERSIZE]; 
    FILE *fp; /* File pointer */ 
    int max_gray; /* Maximum gray level */ 
    int x, y; /* Loop variable */ 

    /* Input file open */ 
    fp = fopen(filename, "rb"); 
    if (NULL == fp) { 
     printf("  The file doesn't exist!\n\n"); 
     exit(1); 
    } 
    /* Check of file-type ---P5 */ 
    fgets(buffer, MAX_BUFFERSIZE, fp); 
    if (buffer[0] != 'P' || buffer[1] != '5') { 
     printf("  Mistaken file format, not P5!\n\n"); 
     exit(1); 
    } 
    /* input of x_size1, y_size1 */ 
    x_size1 = 0; 
    y_size1 = 0; 
    while (x_size1 == 0 || y_size1 == 0) { 
     fgets(buffer, MAX_BUFFERSIZE, fp); 
     if (buffer[0] != '#') { 
      sscanf(buffer, "%d %d", &x_size1, &y_size1); 
     } 
    } 
    /* input of max_gray */ 
    max_gray = 0; 
    while (max_gray == 0) { 
     fgets(buffer, MAX_BUFFERSIZE, fp); 
     if (buffer[0] != '#') { 
      sscanf(buffer, "%d", &max_gray); 
     } 
    } 
    if (x_size1 > MAX_IMAGEWIDTH || y_size1 > MAX_IMAGEHEIGHT) { 
     printf("  Image size exceeds %d x %d\n\n", 
      MAX_IMAGEWIDTH, MAX_IMAGEHEIGHT); 
     printf("  Please use smaller images!\n\n"); 
     exit(1); 
    } 
    if (max_gray != MAX_BRIGHTNESS) { 
     printf("  Invalid value of maximum gray level!\n\n"); 
     exit(1); 
    } 
    /* Input of image data*/ 
    for (y = 0; y < y_size1; y++) { 
     for (x = 0; x < x_size1; x++) { 
      image1[y][x] = (float)fgetc(fp); 
     } 
    } 
    fclose(fp); 
} 

void save_image_file(char *filename) 
/* Output of image2[ ][ ], x_size2, y_size2 */ 
/* into pgm file with header & body information */ 
{ 
    FILE *fp; /* File pointer */ 
    int x, y; /* Loop variable */ 

    fp = fopen(filename, "wb"); 
    /* output of pgm file header information */ 
    fputs("P5\n", fp); 
    fputs("# Created by Image Processing\n", fp); 
    fprintf(fp, "%d %d\n", x_size2, y_size2); 
    fprintf(fp, "%d\n", MAX_BRIGHTNESS); 
    /* Output of image data */ 
    for (y = 0; y < y_size2; y++) { 
     for (x = 0; x < x_size2; x++) { 
      fputc(image2[y][x], fp); 
     } 
    } 
    fclose(fp); 
} 
+0

您的PGM加载例程假定xsize和ysize将在同一行中指定,但这不是P5 PGM文件的要求,并且如果不是这种情况,则加载例程将失败/挂起。 PGM P5文件在一行中指定xsize并在下一行指定ysize是合法的。 –

回答

2

你只看到图像的一部分的原因是因为你有你的主机图像缓冲区大小之间的不匹配和您的设备图像缓冲区大小。

在主机上,你有这样定义的图像缓存:

#define MAX_IMAGEWIDTH 3840 
#define MAX_IMAGEHEIGHT 2160 
... 
float image1[MAX_IMAGEWIDTH][MAX_IMAGEHEIGHT], 
image2[MAX_IMAGEWIDTH][MAX_IMAGEHEIGHT]; 

你然后进行装载尺寸1024×1024的图像PGM。然后创建尺寸1024×1024的设备存储:

cudaMalloc((void **)&deviceInputImageData, x_size1 * y_size1 * sizeof(float)); 
cudaMalloc((void **)&deviceOutputImageData, x_size1 * y_size1 * sizeof(float)); 

其中x_sizey_size1这里是由你的PGM负载常规定义,这将是1024每换一个1024×1024的图像。

然后当你从主机做一个拷贝到设备(在设备 - >主机拷贝出现了类似的问题以及):

cudaMemcpy(deviceInputImageData, image1, x_size1 * y_size1 * sizeof(float), cudaMemcpyHostToDevice); 

你会被复制从您的主机缓冲连续字节的缓冲装置。这意味着每个到达MAX_IMAGEWIDTH全宽的主机缓冲区都被复制到设备。但这不是你想要的。您只需要将复制到设备的每个主机缓冲区行复制到x_size1

有几种可能的方法来解决这个问题。我敢肯定,最简单的方法就是将MAX_IMAGEWIDTHMAX_IMAGEHEIGHT设置为您打算使用的图像的实际值。当我这样做时,我得到了一个看似合理的过滤结果。

由于这限制了您处理单个图像大小,因此在读取PGM头数据后,更好的方法是动态定义主机图像缓冲区的大小。

或者你也可以使用涉及cudaMemcpy2D的方法,但这似乎是不必要的复杂。

关于第二个问题,“第二批加载”的原因是因为第一批加载只加载共享内存直到线程块的尺寸,所以它加载了共享内存的16x16“补丁”,一个元素每个线程。但是我们需要加载完整的共享内存数组,因此我们必须执行额外的“批处理”加载来填充与过滤器宽度和高度相关的晕区。

下面是修改文件,该文件似乎为我正常工作,展示了动态分配的主图像缓冲区的方法:

#include <stdio.h> 
#include <stdlib.h> 
#include <float.h> 
#include <time.h> 

#define MAX_IMAGEWIDTH 2048 
#define MAX_IMAGEHEIGHT 2048 
#define MAX_BRIGHTNESS 255 /* Maximum gray level */ 
#define GRAYLEVEL  256 /* No. of gray levels */ 
#define MAX_FILENAME 256 /* Filename length limit */ 
#define MAX_BUFFERSIZE 256 

/* Global constant declaration */ 
/* Image storage arrays */ 

float *image1, *image2; 
int x_size1, y_size1, /* width & height of image1*/ 
x_size2, y_size2; /* width & height of image2 */ 

/* Prototype declaration of functions */ 
void load_image_data(); /* image input */ 
void save_image_data(); /* image output*/ 
void load_image_file(char *); /* image input */ 
void save_image_file(char *); /* image output*/ 


/* Main body of functions */ 

void load_image_data() 
/* Input of header & body information of pgm file */ 
/* for image1[ ][ ],x_size1,y_size1 */ 
{ 
    char file_name[MAX_FILENAME]; 
    char buffer[MAX_BUFFERSIZE]; 
    FILE *fp; /* File pointer */ 
    int max_gray; /* Maximum gray level */ 
    int x, y; /* Loop variable */ 

    /* Input file open */ 
    printf("\n-----------------------------------------------------\n"); 
    printf("Monochromatic image file input routine \n"); 
    printf("-----------------------------------------------------\n\n"); 
    printf("  Only pgm binary file is acceptable\n\n"); 
    printf("Name of input image file? (*.pgm) : "); 
    scanf("%s", file_name); 
    fp = fopen(file_name, "rb"); 
    if (NULL == fp) { 
     printf("  The file doesn't exist!\n\n"); 
     exit(1); 
    } 
    /* Check of file-type ---P5 */ 
    fgets(buffer, MAX_BUFFERSIZE, fp); 
    if (buffer[0] != 'P' || buffer[1] != '5') { 
     printf("  Mistaken file format, not P5!\n\n"); 
     exit(1); 
    } 
    /* input of x_size1, y_size1 */ 
    x_size1 = 0; 
    y_size1 = 0; 
    while (x_size1 == 0 || y_size1 == 0) { 
     fgets(buffer, MAX_BUFFERSIZE, fp); 
     if (buffer[0] != '#') { 
      sscanf(buffer, "%d %d", &x_size1, &y_size1); 
     } 
    } 
    /* input of max_gray */ 
    max_gray = 0; 
    while (max_gray == 0) { 
     fgets(buffer, MAX_BUFFERSIZE, fp); 
     if (buffer[0] != '#') { 
      sscanf(buffer, "%d", &max_gray); 
     } 
    } 
    /* Display of parameters */ 
    printf("\n  Image width = %d, Image height = %d\n", x_size1, y_size1); 
    printf("  Maximum gray level = %d\n\n", max_gray); 
    if (x_size1 > MAX_IMAGEWIDTH || y_size1 > MAX_IMAGEHEIGHT) { 
     printf("  Image size exceeds %d x %d\n\n", 
      MAX_IMAGEWIDTH, MAX_IMAGEHEIGHT); 
     printf("  Please use smaller images!\n\n"); 
     exit(1); 
    } 
    if (max_gray != MAX_BRIGHTNESS) { 
     printf("  Invalid value of maximum gray level!\n\n"); 
     exit(1); 
    } 
    image1 = (float *)malloc(x_size1*y_size1*sizeof(float)); 
    /* Input of image data*/ 
    for (y = 0; y < y_size1; y++) { 
     for (x = 0; x < x_size1; x++) { 
      image1[y*x_size1+x] = (unsigned char)fgetc(fp); 
     } 
    } 
    printf("-----Image data input OK-----\n\n"); 
    printf("-----------------------------------------------------\n\n"); 
    fclose(fp); 
} 

void save_image_data() 
/* Output of image2[ ][ ], x_size2, y_size2 in pgm format*/ 

{ 
    char file_name[MAX_FILENAME]; 
    FILE *fp; /* File pointer */ 
    int x, y; /* Loop variable */ 

    /* Output file open */ 
    printf("-----------------------------------------------------\n"); 
    printf("Monochromatic image file output routine\n"); 
    printf("-----------------------------------------------------\n\n"); 
    printf("Name of output image file? (*.pgm) : "); 
    scanf("%s", file_name); 
    fp = fopen(file_name, "wb"); 
    /* output of pgm file header information */ 
    fputs("P5\n", fp); 
    fputs("# Created by Image Processing\n", fp); 
    fprintf(fp, "%d %d\n", x_size2, y_size2); 
    fprintf(fp, "%d\n", MAX_BRIGHTNESS); 
    /* Output of image data */ 
    for (y = 0; y < y_size2; y++) { 
     for (x = 0; x < x_size2; x++) { 
      fputc(image2[y*x_size2+x], fp); 
     } 
    } 
    printf("\n-----Image data output OK-----\n\n"); 
    printf("-----------------------------------------------------\n\n"); 
    fclose(fp); 
} 

#define Mask_width 3 
#define Mask_radius Mask_width/2 
#define TILE_WIDTH 16 
#define w (TILE_WIDTH + Mask_width - 1) 
#define clamp(x) (min(max((x), 0.0), 1.0)) 


__global__ void convolution(float *I, const float* __restrict__ M, float *P, int width, int height) { 
    __shared__ float N_ds[w][w]; 

    // First batch loading 
    int dest = threadIdx.y * TILE_WIDTH + threadIdx.x, 
     destY = dest/w, destX = dest % w, 
     srcY = blockIdx.y * TILE_WIDTH + destY - Mask_radius, 
     srcX = blockIdx.x * TILE_WIDTH + destX - Mask_radius, 
     src = srcY * width + srcX; 
    if (srcY >= 0 && srcY < height && srcX >= 0 && srcX < width) 
     N_ds[destY][destX] = I[src]; 
    else 
     N_ds[destY][destX] = 0; 
    for (int iter = 1; iter <= (w*w)/(TILE_WIDTH*TILE_WIDTH); iter++) 
    { 
     // Second batch loading 
     dest = threadIdx.y * TILE_WIDTH + threadIdx.x + TILE_WIDTH * TILE_WIDTH; 
     destY = dest/w, destX = dest % w; 
     srcY = blockIdx.y * TILE_WIDTH + destY - Mask_radius; 
     srcX = blockIdx.x * TILE_WIDTH + destX - Mask_radius; 
     src = srcY * width + srcX; 
     if (destY < w) { 
      if (srcY >= 0 && srcY < height && srcX >= 0 && srcX < width) 
       N_ds[destY][destX] = I[src]; 
      else 
       N_ds[destY][destX] = 0; 
     } 
    } 
    __syncthreads(); 

    float accum = 0; 
    int y, x; 
    for (y = 0; y < Mask_width; y++) 
     for (x = 0; x < Mask_width; x++) 
      accum += N_ds[threadIdx.y + y][threadIdx.x + x] * M[y * Mask_width + x]; 

    y = blockIdx.y * TILE_WIDTH + threadIdx.y; 
    x = blockIdx.x * TILE_WIDTH + threadIdx.x; 
    if (y < height && x < width) 
     P[y * width + x] = accum; 

} 

void sobel_filtering() 
/* Spatial filtering of image data */ 
/* Sobel filter (horizontal differentiation */ 
/* Input: image1[y][x] ---- Outout: image2[y][x] */ 

{ 
    /* Definition of Sobel filter in horizontal direction */ 
    float weight[3][3] = { { -1, 0, 1 }, 
       { -2, 0, 2 }, 
       { -1, 0, 1 } }; 

    int x, y; /* Loop variable */ 
    float * deviceInputImageData; 
    float * deviceOutputImageData; 
    float * deviceMaskData; 

    cudaMalloc((void **)&deviceInputImageData, x_size1 * y_size1 * sizeof(float)); 
    cudaMalloc((void **)&deviceOutputImageData, x_size1 * y_size1 * sizeof(float)); 
    cudaMalloc((void **)&deviceMaskData, 3 * 3 * sizeof(float)); 

    cudaMemcpy(deviceInputImageData, image1, x_size1 * y_size1 * sizeof(float), cudaMemcpyHostToDevice); 
    cudaMemcpy(deviceMaskData, weight, 3 * 3 * sizeof(float), cudaMemcpyHostToDevice); 

    /* Maximum values calculation after filtering*/ 
    printf("Now, filtering of input image is performed\n\n"); 
    x_size2 = x_size1; 
    y_size2 = y_size1; 
    image2 = (float *)malloc(x_size2*y_size2*sizeof(float)); 
    for (y = 0; y < y_size2; y++) { 
     for (x = 0; x < x_size2; x++) { 
      image2[y*x_size2+x] = 0; 
     } 
    } 

    dim3 dimGrid(ceil((float)x_size1/TILE_WIDTH), ceil((float)y_size1/TILE_WIDTH)); 
    dim3 dimBlock(TILE_WIDTH, TILE_WIDTH); 
    convolution<<<dimGrid, dimBlock>>>(deviceInputImageData, deviceMaskData, deviceOutputImageData, x_size1, y_size1); 


    cudaMemcpy(image2, 
     deviceOutputImageData, 
     x_size2 * y_size2 * sizeof(float), 
     cudaMemcpyDeviceToHost); 

    cudaFree(deviceInputImageData); 
    cudaFree(deviceOutputImageData); 
    cudaFree(deviceMaskData); 

} 


int main() 
{ 
    load_image_data(); /* Input of image1 */ 

    clock_t begin = clock(); 
    sobel_filtering(); /* Sobel filter is applied to image1 */ 
    clock_t end = clock(); 
    double time_spent = (double)(end - begin)/CLOCKS_PER_SEC; 
    printf("\n\nTiming result of multiplication of matrix-vector: %f\n", time_spent); 
    save_image_data(); /* Output of image2 */ 
    return 0; 
} 

注意上面的代码(您的PGM负载例程)已经(IMO)一缺点在于它需要在PGM文件的同一行上指定x和y的大小,但据我所知这不是P5 PGM文件的要求。如果您传递了一个有效的P5 PGM文件,该文件在文件中的不同行上指定了x和y大小,则它将挂起。我没有试图解决这个问题,因为它似乎不是你要问的问题。

+0

非常感谢您的帮助! – lovetolearn