2016-07-28 188 views
2

我有两个线段,在其起点/终点处用3D点表示。查找两个3D线段之间的最短距离

线:

class Line 
{ 
    public string Name { get; set; } 
    public Point3D Start { get; set; } = new Point3D(); 
    public Point3D End { get; set; } = new Point3D(); 
} 

三维点是坐标的X,Y和Z仅有3双打

3DPoint:

class Point3D 
{ 
    public double X { get; set; } 
    public double Y { get; set; } 
    public double Z { get; set; } 
} 

问题:

我能找到两条'线条'和''之间的距离吗?距离'线'的端点。 [Here is an Image to Better Illustrate What I am trying to Achieve1

我有什么:

目前,我能顺利拿到两线之间,此代码(Adapted From Here使用段与段段)的距离:

public double lineNearLine(Line l1, Line l2) 
    { 
     Vector3D uS = new Vector3D { X = l1.Start.X, Y = l1.Start.Y, Z = l1.Start.Z }; 
     Vector3D uE = new Vector3D { X = l1.End.X, Y = l1.End.Y, Z = l1.End.Z }; 
     Vector3D vS = new Vector3D { X = l2.Start.X, Y = l2.Start.Y, Z = l2.Start.Z }; 
     Vector3D vE = new Vector3D { X = l2.End.X, Y = l2.End.Y, Z = l2.End.Z }; 
     Vector3D w1 = new Vector3D { X = l1.Start.X, Y = l1.Start.Y, Z = l1.Start.Z }; 
     Vector3D w2 = new Vector3D { X = l2.Start.X, Y = l2.Start.Y, Z = l2.Start.Z }; 
     Vector3D u = uE - uS; 
     Vector3D v = vE - vS; 
     Vector3D w = w1 - w2; 
     double a = Vector3D.DotProduct(u, u); 
     double b = Vector3D.DotProduct(u, v); 
     double c = Vector3D.DotProduct(v, v); 
     double d = Vector3D.DotProduct(u, w); 
     double e = Vector3D.DotProduct(v, w); 
     double D = a * c - b * b; 
     double sc, sN, sD = D; 
     double tc, tN, tD = D; 
     if (D < 0.01) 
     { 
      sN = 0; 
      sD = 1; 
      tN = e; 
      tD = c; 
     } 
     else 
     { 
      sN = (b * e - c * d); 
      tN = (a * e - b * d); 
      if (sN < 0) 
      { 
       sN = 0; 
       tN = e; 
       tD = c; 
      } 
      else if (sN > sD) 
      { 
       sN = sD; 
       tN = e + b; 
       tD = c; 
      } 
     } 
     if (tN < 0) 
     { 
      tN = 0; 
      if (-d < 0) 
      { 
       sN = 0; 
      } 
      else if (-d > a) 
      { 
       sN = sD; 
      } 
      else 
      { 
       sN = -d; 
       sD = a; 
      } 
     } 
     else if (tN > tD) 
     { 
      tN = tD; 
      if ((-d + b) < 0) 
      { 
       sN = 0; 
      } 
      else if ((-d + b) > a) 
      { 
       sN = sD; 
      } 
      else 
      { 
       sN = (-d + b); 
       sD = a; 
      } 
     } 
     if (Math.Abs(sN) < 0.01) 
     { 
      sc = 0; 
     } 
     else 
     { 
      sc = sN/sD; 
     } 
     if (Math.Abs(tN) < 0.01) 
     { 
      tc = 0; 
     } 
     else 
     { 
      tc = tN/tD; 
     } 
     Vector3D dP = w + (sc * u) - (tc * v); 
     double distance1 = Math.Sqrt(Vector3D.DotProduct(dP, dP)); 
     return distance1; 
    } 

我需要什么:

是否有任何方法来确定替代的端点nt矢量'dP'从上面的代码?如果没有,任何人都可以提出一个更好的方法来找到最短距离和距离的终点?

感谢您的阅读,并提前感谢您的任何建议!

The Solution!

一个巨大的感谢你@Isaac面包车Bakel的这一解决方案

这背后的理论是我的代码完成:通过在连接它们的线表示两条线之间最短的距离那最短的距离。

类:

  1. Sharp3D.Math:我使用的Vector3D此引用,但实际上任何3D向量类会工作。最重要的是,如果按元素进行减法运算,则甚至不需要使用矢量。
  2. Point3D:我的个人Point3D类。随意使用尽可能多或少用,如你所愿。

    class Point3D 
    { 
        public double X { get; set; } 
        public double Y { get; set; } 
        public double Z { get; set; } 
        public Vector3D getVector() 
        { 
         return new Vector3D { X = this.X, Y = this.Y, Z = this.Z }; 
        } 
    
    } 
    
  3. Line:My Personal Line class。随意使用尽可能多或少用,如你所愿。

    class Line 
    { 
        public string Name { get; set; } 
        public Point3D Start { get; set; } = new Point3D(); 
        public Point3D End { get; set; } = new Point3D(); 
        public double Length 
        { 
         get 
         { 
          return Math.Sqrt(Math.Pow((End.X - Start.X), 2) + Math.Pow((End.Y - Start.Y), 2)); 
         } 
        } 
    } 
    

功能:

  1. ClampPointToLine:钳位功能我写的夹紧点到线。

    public Point3D ClampPointToLine(Point3D pointToClamp, Line lineToClampTo) 
    { 
        Point3D clampedPoint = new Point3D(); 
        double minX, minY, minZ, maxX, maxY, maxZ; 
        if(lineToClampTo.Start.X <= lineToClampTo.End.X) 
        { 
         minX = lineToClampTo.Start.X; 
         maxX = lineToClampTo.End.X; 
        } 
        else 
        { 
         minX = lineToClampTo.End.X; 
         maxX = lineToClampTo.Start.X; 
        } 
        if (lineToClampTo.Start.Y <= lineToClampTo.End.Y) 
        { 
         minY = lineToClampTo.Start.Y; 
         maxY = lineToClampTo.End.Y; 
        } 
        else 
        { 
         minY = lineToClampTo.End.Y; 
         maxY = lineToClampTo.Start.Y; 
        } 
        if (lineToClampTo.Start.Z <= lineToClampTo.End.Z) 
        { 
         minZ = lineToClampTo.Start.Z; 
         maxZ = lineToClampTo.End.Z; 
        } 
        else 
        { 
         minZ = lineToClampTo.End.Z; 
         maxZ = lineToClampTo.Start.Z; 
        } 
        clampedPoint.X = (pointToClamp.X < minX) ? minX : (pointToClamp.X > maxX) ? maxX : pointToClamp.X; 
        clampedPoint.Y = (pointToClamp.Y < minY) ? minY : (pointToClamp.Y > maxY) ? maxY : pointToClamp.Y; 
        clampedPoint.Z = (pointToClamp.Z < minZ) ? minZ : (pointToClamp.Z > maxZ) ? maxZ : pointToClamp.Z; 
        return clampedPoint; 
    } 
    
  2. distanceBetweenLines:返回表示两行之间最短距离的行的函数。如果无法解决,则返回null。

    public Line distBetweenLines(Line l1, Line l2) 
    { 
        Vector3D p1, p2, p3, p4, d1, d2; 
        p1 = l1.Start.getVector(); 
        p2 = l1.End.getVector(); 
        p3 = l2.Start.getVector(); 
        p4 = l2.End.getVector(); 
        d1 = p2 - p1; 
        d2 = p4 - p3; 
        double eq1nCoeff = (d1.X * d2.X) + (d1.Y * d2.Y) + (d1.Z * d2.Z); 
        double eq1mCoeff = (-(Math.Pow(d1.X, 2)) - (Math.Pow(d1.Y, 2)) - (Math.Pow(d1.Z, 2))); 
        double eq1Const = ((d1.X * p3.X) - (d1.X * p1.X) + (d1.Y * p3.Y) - (d1.Y * p1.Y) + (d1.Z * p3.Z) - (d1.Z * p1.Z)); 
        double eq2nCoeff = ((Math.Pow(d2.X, 2)) + (Math.Pow(d2.Y, 2)) + (Math.Pow(d2.Z, 2))); 
        double eq2mCoeff = -(d1.X * d2.X) - (d1.Y * d2.Y) - (d1.Z * d2.Z); 
        double eq2Const = ((d2.X * p3.X) - (d2.X * p1.X) + (d2.Y * p3.Y) - (d2.Y * p2.Y) + (d2.Z * p3.Z) - (d2.Z * p1.Z)); 
        double[,] M = new double[,] { { eq1nCoeff, eq1mCoeff, -eq1Const }, { eq2nCoeff, eq2mCoeff, -eq2Const } }; 
        int rowCount = M.GetUpperBound(0) + 1; 
        // pivoting 
        for (int col = 0; col + 1 < rowCount; col++) if (M[col, col] == 0) 
         // check for zero coefficients 
         { 
          // find non-zero coefficient 
          int swapRow = col + 1; 
          for (; swapRow < rowCount; swapRow++) if (M[swapRow, col] != 0) break; 
    
          if (M[swapRow, col] != 0) // found a non-zero coefficient? 
          { 
           // yes, then swap it with the above 
           double[] tmp = new double[rowCount + 1]; 
           for (int i = 0; i < rowCount + 1; i++) 
           { tmp[i] = M[swapRow, i]; M[swapRow, i] = M[col, i]; M[col, i] = tmp[i]; } 
          } 
          else return null; // no, then the matrix has no unique solution 
         } 
    
        // elimination 
        for (int sourceRow = 0; sourceRow + 1 < rowCount; sourceRow++) 
        { 
         for (int destRow = sourceRow + 1; destRow < rowCount; destRow++) 
         { 
          double df = M[sourceRow, sourceRow]; 
          double sf = M[destRow, sourceRow]; 
          for (int i = 0; i < rowCount + 1; i++) 
           M[destRow, i] = M[destRow, i] * df - M[sourceRow, i] * sf; 
         } 
        } 
    
        // back-insertion 
        for (int row = rowCount - 1; row >= 0; row--) 
        { 
         double f = M[row, row]; 
         if (f == 0) return null; 
    
         for (int i = 0; i < rowCount + 1; i++) M[row, i] /= f; 
         for (int destRow = 0; destRow < row; destRow++) 
         { M[destRow, rowCount] -= M[destRow, row] * M[row, rowCount]; M[destRow, row] = 0; } 
        } 
        double n = M[0, 2]; 
        double m = M[1, 2]; 
        Point3D i1 = new Point3D { X = p1.X + (m * d1.X), Y = p1.Y + (m * d1.Y), Z = p1.Z + (m * d1.Z) }; 
        Point3D i2 = new Point3D { X = p3.X + (n * d2.X), Y = p3.Y + (n * d2.Y), Z = p3.Z + (n * d2.Z) }; 
        Point3D i1Clamped = ClampPointToLine(i1, l1); 
        Point3D i2Clamped = ClampPointToLine(i2, l2); 
        return new Line { Start = i1Clamped, End = i2Clamped }; 
    } 
    

实现:

Line shortestDistanceLine = distBetweenLines(l1, l2); 

结果:

到目前为止,这一直在我的测试准确。如果传递两个相同的行,则返回null。我很欣赏任何反馈!

+0

在这个图像中,它看起来像所需的点是线的中心......就是在这个例子中?因为如果它的随机线路几乎不会是这样。那是两条线之间可能的最短距离 – Neil

+0

是的,它是用油漆作为我试图获得的任意例子。这些线不是随机产生的,但是它们的定位非常随意。 – Kikootwo

+0

只是为了澄清,你是说它总是你正在寻找的线段的中点? –

回答

2

两条倾斜线(不相交的线)之间的最短距离是垂直于它们两条线的距离。

如果我们有一个已知点P1和P2,并与已知点P3和P4线L2线L1:

The direction vector of l1 is p2-p1, or d1. 
The direction vector of l2 is p4-p3, or d2. 

因此,我们知道,向量,我们正在寻找,V,垂直以这两个方向矢量:

d1.v = 0 & d2.v = 0 

或者,如果你喜欢:

d1x*vx + d1y*vy + d1z*vz = 0 

和S ame for d2。

让我们看看线l1,l2上的点,其中v实际上垂直于方向。我们将分别称这两点为i1和i2。由于v是i1和i2之间的向量(根据定义),我们得到v = i2-i1。

这给出了在x,y和z的v的矢量的取代:

vx = i2x - i1x = (p3x + n*d2x) - (p1x + m*d1x) 

等。

,你现在可以代替回到您的点积方程:

d1x * ((p3x + n*d2x) - (p1x + m*d1x)) + ... = 0 

这有两个未知数(m和n)减少了方程的数目为2(两个点积方程),所以你现在可以解决它们!

一旦你有m和n,你可以通过回到i1和i2的原始计算来找到坐标。

如果您只希望p1-p2和p3-p4之间的线段上的点的最短距离,则可以将i1和i2夹在这些坐标范围之间,因为最短距离将始终接近垂线可能。

+0

这很好,我刚刚做了一个快速的说明。即使它们是斜线段,它们之间的最短距离对两条线而言仍然是垂直线吗? – Kikootwo

+1

这取决于我在答案的最后部分提到的内容 - 是否要限制点的范围为p1到p2以及p3到p4的每一端?如果是的话,它不会总是垂直的,但它会尽可能地接近。如果否,它将始终是垂直的。 –

+0

好吧,是的,我希望它总是被限制在p1-p2和p3-4的范围内。你提到'钳',但我不是积极的是什么。 – Kikootwo