2016-07-15 63 views
1

我使用熊猫来读取非常大的csv文件,这也是gzip。 我解压缩到大约30-50GB的csv文件。 我分块文件并处理/操作它们。 最后,相关数据添加到我压缩购买内存,以避免30-50Gb加文件分块

它工作正常,但速度很慢,因为我要处理,每天一个文件,有几个年的数据(600TB未压缩的CSV)

能买HDF5文件更多内存是避免分块和加速64GB/128GB的过程的好方法? 但这会使熊猫变得缓慢而笨拙吗? 我是否正确地说切换到C++可以加速这个过程,但我仍然忍受着读取过程,不得不以块为单位处理数据。 最后有没有人有任何想法来处理这个最好的方法。

顺便说一下,一旦工作完成,我不必回过头去处理数据,所以想让它在合理的时间内工作,所以写了一些东西,并行过程可能不错,但经验有限那个领域需要我花些时间才能构建出来,所以宁愿不去除非那是唯一的选择。

更新。我认为这会更容易看到代码。无论如何,我不相信代码特别慢。我认为技术/方法可能是。

def txttohdf(path, contract): 
    #create dataframes for trade and quote 
    dftrade = pd.DataFrame(columns = ["datetime", "Price", "Volume"]) 
    dfquote = pd.DataFrame(columns = ["datetime", "BidPrice", "BidSize","AskPrice", "AskSize"]) 
    #create an hdf5 file with high compression and table so we can append 
    hdf = pd.HDFStore(path + contract + '.h5', complevel=9, complib='blosc') 
    hdf.put('trade', dftrade, format='table', data_columns=True) 
    hdf.put('quote', dfquote, format='table', data_columns=True) 
    #date1 = date(start).strftime('%Y%m%d') 
    #date2 = date(end).strftime('%Y%m%d') 
    #dd = [date1 + timedelta(days=x) for x in range((date2-date1).days + 1)] 
    #walkthrough directories 
    for subdir, dir, files in os.walk(path): 
     for file in files: 
      #check if contract has name 
      #print(file) 
       #create filename from directory and file 

      filename = os.path.join(subdir, file) 
       #read in csv 
      if filename.endswith('.gz'): 

       df = pd.read_csv(gzip.open(filename),header=0,iterator=True,chunksize = 10000, low_memory =False, names = ['RIC','Date','Time','GMTOffset','Type','ExCntrbID','LOC','Price','Volume','MarketVWAP','BuyerID','BidPrice','BidSize','NoBuyers','SellerID','AskPrice','AskSize','NoSellers','Qualifiers','SeqNo','ExchTime','BlockTrd','FloorTrd','PERatio','Yield','NewPrice','NewVol','NewSeqNo','BidYld','AskYld','ISMABidYld','ISMAAskYld','Duration','ModDurtn','BPV','AccInt','Convexity','BenchSpd','SwpSpd','AsstSwpSpd','SwapPoint','BasePrice','UpLimPrice','LoLimPrice','TheoPrice','StockPrice','ConvParity','Premium','BidImpVol','AskImpVol','ImpVol','PrimAct','SecAct','GenVal1','GenVal2','GenVal3','GenVal4','GenVal5','Crack','Top','FreightPr','1MnPft','3MnPft','PrYrPft','1YrPft','3YrPft','5YrPft','10YrPft','Repurch','Offer','Kest','CapGain','Actual','Prior','Revised','Forecast','FrcstHigh','FrcstLow','NoFrcts','TrdQteDate','QuoteTime','BidTic','TickDir','DivCode','AdjClose','PrcTTEFlag','IrgTTEFlag','PrcSubMktId','IrgSubMktId','FinStatus','DivExDate','DivPayDate','DivAmt','Open','High','Low','Last','OpenYld','HighYld','LowYld','ShortPrice','ShortVol','ShortTrdVol','ShortTurnnover','ShortWeighting','ShortLimit','AccVolume','Turnover','ImputedCls','ChangeType','OldValue','NewValue','Volatility','Strike','Premium','AucPrice','Auc Vol','MidPrice','FinEvalPrice','ProvEvalPrice','AdvancingIssues','DecliningIssues','UnchangedIssues','TotalIssues','AdvancingVolume','DecliningVolume','UnchangedVolume','TotalVolume','NewHighs','NewLows','TotalMoves','PercentageChange','AdvancingMoves','DecliningMoves','UnchangedMoves','StrongMarket','WeakMarket','ChangedMarket','MarketVolatility','OriginalDate','LoanAskVolume','LoanAskAmountTradingPrice','PercentageShortVolumeTradedVolume','PercentageShortPriceTradedPrice','ForecastNAV','PreviousDaysNAV','FinalNAV','30DayATMIVCall','60DayATMIVCall','90DayATMIVCall','30DayATMIVPut','60DayATMIVPut','90DayATMIVPut','BackgroundReference','DataSource','BidSpread','AskSpread','ContractPhysicalUnits','Miniumumquantity','NumberPhysicals','ClosingReferencePrice','ImbalanceQuantity','FarClearingPrice','NearClearingPrice','OptionAdjustedSpread','ZSpread','ConvexityPremium','ConvexityRatio','PercentageDailyReturn','InterpolatedCDSBasis','InterpolatedCDSSpread','ClosesttoMaturityCDSBasis','SettlementDate','EquityPrice','Parity','CreditSpread','Delta','InputVolatility','ImpliedVolatility','FairPrice','BondFloor','Edge','YTW','YTB','SimpleMargin','DiscountMargin','12MonthsEPS','UpperTradingLimit','LowerTradingLimit','AmountOutstanding','IssuePrice','GSpread','MiscValue','MiscValueDescription']) 
       #parse date time this is quicker than doing it while we read it in 
       for chunk in df: 
        chunk['datetime'] = chunk.apply(lambda row: datetime.datetime.strptime(row['Date']+ ':' + row['Time'],'%d-%b-%Y:%H:%M:%S.%f'), axis=1) 
        #df = df[~df.comment.str.contains('ALIAS')] 
       #drop uneeded columns inc date and time 
        chunk = chunk.drop(['Date','Time','GMTOffset','ExCntrbID','LOC','MarketVWAP','BuyerID','NoBuyers','SellerID','NoSellers','Qualifiers','SeqNo','ExchTime','BlockTrd','FloorTrd','PERatio','Yield','NewPrice','NewVol','NewSeqNo','BidYld','AskYld','ISMABidYld','ISMAAskYld','Duration','ModDurtn','BPV','AccInt','Convexity','BenchSpd','SwpSpd','AsstSwpSpd','SwapPoint','BasePrice','UpLimPrice','LoLimPrice','TheoPrice','StockPrice','ConvParity','Premium','BidImpVol','AskImpVol','ImpVol','PrimAct','SecAct','GenVal1','GenVal2','GenVal3','GenVal4','GenVal5','Crack','Top','FreightPr','1MnPft','3MnPft','PrYrPft','1YrPft','3YrPft','5YrPft','10YrPft','Repurch','Offer','Kest','CapGain','Actual','Prior','Revised','Forecast','FrcstHigh','FrcstLow','NoFrcts','TrdQteDate','QuoteTime','BidTic','TickDir','DivCode','AdjClose','PrcTTEFlag','IrgTTEFlag','PrcSubMktId','IrgSubMktId','FinStatus','DivExDate','DivPayDate','DivAmt','Open','High','Low','Last','OpenYld','HighYld','LowYld','ShortPrice','ShortVol','ShortTrdVol','ShortTurnnover','ShortWeighting','ShortLimit','AccVolume','Turnover','ImputedCls','ChangeType','OldValue','NewValue','Volatility','Strike','Premium','AucPrice','Auc Vol','MidPrice','FinEvalPrice','ProvEvalPrice','AdvancingIssues','DecliningIssues','UnchangedIssues','TotalIssues','AdvancingVolume','DecliningVolume','UnchangedVolume','TotalVolume','NewHighs','NewLows','TotalMoves','PercentageChange','AdvancingMoves','DecliningMoves','UnchangedMoves','StrongMarket','WeakMarket','ChangedMarket','MarketVolatility','OriginalDate','LoanAskVolume','LoanAskAmountTradingPrice','PercentageShortVolumeTradedVolume','PercentageShortPriceTradedPrice','ForecastNAV','PreviousDaysNAV','FinalNAV','30DayATMIVCall','60DayATMIVCall','90DayATMIVCall','30DayATMIVPut','60DayATMIVPut','90DayATMIVPut','BackgroundReference','DataSource','BidSpread','AskSpread','ContractPhysicalUnits','Miniumumquantity','NumberPhysicals','ClosingReferencePrice','ImbalanceQuantity','FarClearingPrice','NearClearingPrice','OptionAdjustedSpread','ZSpread','ConvexityPremium','ConvexityRatio','PercentageDailyReturn','InterpolatedCDSBasis','InterpolatedCDSSpread','ClosesttoMaturityCDSBasis','SettlementDate','EquityPrice','Parity','CreditSpread','Delta','InputVolatility','ImpliedVolatility','FairPrice','BondFloor','Edge','YTW','YTB','SimpleMargin','DiscountMargin','12MonthsEPS','UpperTradingLimit','LowerTradingLimit','AmountOutstanding','IssuePrice','GSpread','MiscValue','MiscValueDescription'], axis=1) 
       # convert to datetime explicitly and add nanoseconds to same time stamps 
        chunk['datetime'] = pd.to_datetime(chunk.datetime) 
       #nanoseconds = df.groupby(['datetime']).cumcount() 
       #df['datetime'] += np.array(nanoseconds, dtype='m8[ns]') 
       # drop empty prints and make sure all prices are valid 
        dfRic = chunk[(chunk["RIC"] == contract)] 
        if len(dfRic)>0: 
         print(dfRic) 
        if ~chunk.empty: 
         dft = dfRic[(dfRic["Type"] == "Trade")] 
         dft.dropna(subset = ["Volume"], inplace =True) 
         dft = dft.drop(["RIC","Type","BidPrice", "BidSize", "AskPrice", "AskSize"], axis=1) 
         dft = dft[(dft["Price"] > 0)] 

        # clean up bid and ask 
         dfq = dfRic[(dfRic["Type"] == "Quote")] 
         dfq.dropna(how = 'all', subset = ["BidSize","AskSize"], inplace =True) 
         dfq = dfq.drop(["RIC","Type","Price", "Volume"], axis=1) 
         dfq = dfq[(dfq["BidSize"] > 0) | (dfq["AskSize"] > 0)] 
         dfq = dfq.ffill() 
        else: 
         print("Empty")  
    #add to hdf and close if loop finished 
        hdf.append('trade', dft, format='table', data_columns=True) 
        hdf.append('quote', dfq, format='table', data_columns=True) 
    hdf.close() 
+0

你能解释什么是缓慢的,为什么它慢?没有更多的细节,很难猜测什么有助于加快这一进程。 –

+1

您应该尝试分析和测量程序的性能,以确定哪些点最慢以及内存或CPU功耗是否是限制因素。这将有助于缩小特定更改对您的帮助。然后,您还可以将最慢的源代码部分上传到http://codereview.stackexchange.com/上的问题,并征求关于提高其性能的建议。 – gfv

+0

我会尝试读取块压缩的CSV格式,而不是首先解压缩它们 - 这样,您应该拥有更少的IO(通常是最慢的部分之一)。除此之外,拥有更多内存应该允许你拥有更大的块,或者甚至可以在没有块的情况下完成,如果你的内存将近似于。比所产生的DF大两倍。在同一台服务器/计算机上进行并行处理(如果你的意思是DASK)会使开销变得更糟。如果你需要一个真正的权力看看Apache PySpark SQL,但这将意味着更高的投资到Hadoop集群 - 只是我的2美分... – MaxU

回答

1

我觉得你有哪些可优化不少东西:

  • 首先是只读那些你真正需要的不是读取列,然后拖放 - 使用usecols=list_of_needed_columns参数

  • 增加CHUNKSIZE - 使用不同的值尝试 - 我会开始10**5

  • 不使用chunk.apply(...)转换的日期时间 - 这是很慢 - 使用pd.to_datetime(列,格式=“...”),而不是

  • 您可以过滤你的数据更有效地结合位多个条件时而不是一步一步地做:

+0

多数民众赞成在伟大的,将应用变化 - 你绝对正确的申请,我忘记了这一点。 – azuric