2017-04-12 95 views
3

我运行了一个编译语言的简单程序,它使用两个简单循环计算前几个自然数的阶乘,外部记录一个是我们计算阶乘的数字,内部一个通过乘以从1到数字本身的每个自然数来计算阶乘。 该程序适用于第一个自然数,然后大约从第13个值开始计算的因子显然是错误的。这是由于在现代计算机中实现的整数运算,我可以理解为什么会出现负值。 我不明白的是,为什么,这是我在不同的计算机上测试过的东西,经过非常少量的阶乘计算后,总是会达到零。当然,如果第n个因子被评估为0,第(n + 1)个因子将被评估为0等等,但为什么数字0总是出现在非常少量的阶乘计算?因子循环变为0

编辑:您可能想知道为什么我使用了两个不同的周期而不是只有一个...我这样做是为了强制计算机重新计算每个因子从开始,只是为了测试事实,确实因子成为永远0,这并非偶然。

这是我的输出:

Output of my program

+0

“一种编译语言”...意义?你似乎知道术语,但你的“现代计算机”仍然遭受整数溢出 –

+1

请显示你的代码。 – Mazz

回答

7

从34开始!所有阶乘是由2^32整除。所以当你的计算机程序计算结果模2^32(其中,尽管你没有说你正在使用什么编程语言,这很可能),那么结果总是0.

这是一个程序,计算阶乘MOD 2^32的Python:

def sint(r): 
    r %= (1 << 32) 
    return r if r < (1 << 31) else r - (1 << 32) 

r = 1 
for i in xrange(1, 40): 
    r *= i 
    print '%d! = %d mod 2^32' % (i, sint(r)) 

哪个给出了这样的输出,从你自身程序的输出一致:

1! = 1 mod 2^32 
2! = 2 mod 2^32 
3! = 6 mod 2^32 
4! = 24 mod 2^32 
5! = 120 mod 2^32 
6! = 720 mod 2^32 
7! = 5040 mod 2^32 
8! = 40320 mod 2^32 
9! = 362880 mod 2^32 
10! = 3628800 mod 2^32 
11! = 39916800 mod 2^32 
12! = 479001600 mod 2^32 
13! = 1932053504 mod 2^32 
14! = 1278945280 mod 2^32 
15! = 2004310016 mod 2^32 
16! = 2004189184 mod 2^32 
17! = -288522240 mod 2^32 
18! = -898433024 mod 2^32 
19! = 109641728 mod 2^32 
20! = -2102132736 mod 2^32 
21! = -1195114496 mod 2^32 
22! = -522715136 mod 2^32 
23! = 862453760 mod 2^32 
24! = -775946240 mod 2^32 
25! = 2076180480 mod 2^32 
26! = -1853882368 mod 2^32 
27! = 1484783616 mod 2^32 
28! = -1375731712 mod 2^32 
29! = -1241513984 mod 2^32 
30! = 1409286144 mod 2^32 
31! = 738197504 mod 2^32 
32! = -2147483648 mod 2^32 
33! = -2147483648 mod 2^32 
34! = 0 mod 2^32 
35! = 0 mod 2^32 
36! = 0 mod 2^32 
37! = 0 mod 2^32 
38! = 0 mod 2^32 
39! = 0 mod 2^32 

下面是这个范围的精确值的表显示多少个2的幂数:

1! = 1. Divisible by 2^0 
2! = 2. Divisible by 2^1 
3! = 6. Divisible by 2^1 
4! = 24. Divisible by 2^3 
5! = 120. Divisible by 2^3 
6! = 720. Divisible by 2^4 
7! = 5040. Divisible by 2^4 
8! = 40320. Divisible by 2^7 
9! = 362880. Divisible by 2^7 
10! = 3628800. Divisible by 2^8 
11! = 39916800. Divisible by 2^8 
12! = 479001600. Divisible by 2^10 
13! = 6227020800. Divisible by 2^10 
14! = 87178291200. Divisible by 2^11 
15! = 1307674368000. Divisible by 2^11 
16! = 20922789888000. Divisible by 2^15 
17! = 355687428096000. Divisible by 2^15 
18! = 6402373705728000. Divisible by 2^16 
19! = 121645100408832000. Divisible by 2^16 
20! = 2432902008176640000. Divisible by 2^18 
21! = 51090942171709440000. Divisible by 2^18 
22! = 1124000727777607680000. Divisible by 2^19 
23! = 25852016738884976640000. Divisible by 2^19 
24! = 620448401733239439360000. Divisible by 2^22 
25! = 15511210043330985984000000. Divisible by 2^22 
26! = 403291461126605635584000000. Divisible by 2^23 
27! = 10888869450418352160768000000. Divisible by 2^23 
28! = 304888344611713860501504000000. Divisible by 2^25 
29! = 8841761993739701954543616000000. Divisible by 2^25 
30! = 265252859812191058636308480000000. Divisible by 2^26 
31! = 8222838654177922817725562880000000. Divisible by 2^26 
32! = 263130836933693530167218012160000000. Divisible by 2^31 
33! = 8683317618811886495518194401280000000. Divisible by 2^31 
34! = 295232799039604140847618609643520000000. Divisible by 2^32 
35! = 10333147966386144929666651337523200000000. Divisible by 2^32 
36! = 371993326789901217467999448150835200000000. Divisible by 2^34 
37! = 13763753091226345046315979581580902400000000. Divisible by 2^34 
38! = 523022617466601111760007224100074291200000000. Divisible by 2^35 
39! = 20397882081197443358640281739902897356800000000. Divisible by 2^35 
+0

我以前没听说过这个事实。你有证据链接吗? – paddy

+1

@paddy你可以只计算2的因子。在1 ... 34中,有可以被2整除的楼层(34/2)数字,可以被4整除的楼层(34/4)数字,可以被整除的楼层(34/8)数字8,等等。 (34 // 2)+(34 // 4)+(34 // 8)+(34 // 16)+(34 // 32)= 32'。 –

+0

是不是1位用于整数的符号(+或 - )?那么当数字可以被2^31整除时,它不应该始终为0吗? – John

2

每个乘法追加从右侧零位,直到在某个迭代最左位被丢弃,因为溢出。 的影响作用:

int i, x=1; 
    for (i=1; i <=50; i++) { 
     x *= i; 
     for (int i = 31; i >= 0; --i) { 
      printf("%i",(x >> i) & 1); 
     } 
     printf("\n"); 
    } 

输出位:

 
00000000000000000000000000000001 
00000000000000000000000000000010 
00000000000000000000000000000110 
00000000000000000000000000011000 
00000000000000000000000001111000 
00000000000000000000001011010000 
00000000000000000001001110110000 
00000000000000001001110110000000 
00000000000001011000100110000000 
00000000001101110101111100000000 
00000010011000010001010100000000 
00011100100011001111110000000000 
01110011001010001100110000000000 
01001100001110110010100000000000 
01110111011101110101100000000000 
01110111011101011000000000000000 
11101110110011011000000000000000 
11001010011100110000000000000000 
00000110100010010000000000000000 
10000010101101000000000000000000 
10111000110001000000000000000000 
11100000110110000000000000000000 
00110011100000000000000000000000 
11010000000000000000000000000000 
10000000000000000000000000000000 
00000000000000000000000000000000 

请注意,我们得到零之前 - 我们得到INT_MIN。追加另一个零位 - 丢弃符号位,因此从INT_MIN我们得到纯粹的零。

+0

很好的可视化! –